Asymptotic Behaviour of Reproducing Kernels of Weighted Bergman Spaces

نویسنده

  • MIROSLAV ENGLIŠ
چکیده

Let Ω be a domain in Cn, F a nonnegative and G a positive function on Ω such that 1/G is locally bounded, Aα the space of all holomorphic functions on Ω square-integrable with respect to the measure FαGdλ, where dλ is the 2n-dimensional Lebesgue measure, and Kα(x, y) the reproducing kernel for Aα. It has been known for a long time that in some special situations (such as on bounded symmetric domains Ω with G = 1 and F = the Bergman kernel function) the formula lim α→+∞α x) 1/α = 1/F (x) (∗) holds true. [This fact even plays a crucial role in Berezin’s theory of quantization on curved phase spaces.] In this paper we discuss the validity of this formula in the general case. The answer turns out to depend on, loosely speaking, how well the function − logF can be approximated by certain pluriharmonic functions lying below it. For instance, (∗) holds if − logF is convex (and, hence, can be approximated from below by linear functions), for any function G. Counterexamples are also given to show that in general (∗) may fail drastically, or even be true for some x and fail for the remaining ones. Finally, we also consider the question of convergence of Kα(x, y)1/α for x 6= y, which leads to an unexpected result showing that the zeroes of the reproducing kernels are affected by the smoothness of F : for instance, if F is not real-analytic at some point, then Kα(x, y) must have zeroes for all α sufficiently large.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Berezin Transforms on Pluriharmonic Bergman Spaces

We show that, perhaps surprisingly, in several aspects the behaviour of the reproducing kernels, of Toeplitz operators and of the Berezin transform on some weighted pluriharmonic Bergman spaces is the same as in the holomorphic case.

متن کامل

HILBERT SPACES OF TENSOR-VALUED HOLOMORPHIC FUNCTIONS ON THE UNIT BALL OF Cn

The expansion of reproducing kernels of Bergman spaces of holomorphic functions on a domain D in Cn is of considerable interests. If the domain admits an action of a compact group K, then naturally one would like to decompose the space of polynomials into irreducible subspaces of K and expand the reproducing kernels in terms of the reproducing kernels of the finite dimensional subspaces. In [5]...

متن کامل

Toeplitz Operators and Weighted Bergman Kernels

For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997